Öøø¬ Blockin Blockin Blockinð Aeaeùööð Aeaeøûóöö× Óö Ëóðúúòò Çöööòòöý Òò Èöøøøð ««ööòøøøð Õùùøøóò×
نویسندگان
چکیده
We present a method to solve initial and boundary value problems using arti ial neural networks. A trial solution of the di erential equation is written as a sum of two parts. The rst part satis es the initial/boundary onditions and ontains no adjustable parameters. The se ond part is onstru ted so as not to a e t the initial/boundary onditions. This part involves a feedforward neural network, ontaining adjustable parameters (the weights). Hen e by onstru tion the initial/boundary onditions are satis ed and the network is trained to satisfy the di erential equation. The appli ability of this approa h ranges from single ODE's, to systems of oupled ODE's and also to PDE's. In this arti le we illustrate the method by solving a variety model problems and present omparisons with nite elements for several ases of partial di erential equations.
منابع مشابه
Óòúöööò Òòðý××× Óó È××ùùó×ô Blockinøööð Ååøøó× Óö Ëóðúúòò Èöøøøð ««ööòøøøð Õùùøøóò× Ò Èóððö Òò Ýððòòöö Blockin Blockinð Óññøööö×
متن کامل
««ööòøøøøøóò Óó Aeaeùöóò Ìýô× Ý Úóðúúòò Øøúøøóò Ùò Blockinøøóò Ìñôððøø× Óö Öøø¬ Blockin Blockin Blockinð Aeaeùööð Aeaeøûóöö× Ààðñùø º Ååýö Òò Êóððòò Ë Blockinûö
متن کامل
Èöö Blockinøø Blockin Blockinð ×ô Blockinø× Óó Óöñùððøøóò Òò Ëóðùøøóò Óó Åóúúòò Åå×× Èöøøøð ««ööòøøøð Õùùøøóò× Ïþþþòò Àùùòò
متن کامل